[NLP] Word Embedding with Lookup table - nn.Embedding()
파이토치에서는 임베딩 벡터를 사용하는 방법이 크게 두 가지가 있다. 임베딩 층 (embedding layer)를 만들어 훈련 데이터로부터 처음부터 임베딩 벡터를 학습하는 방법과 미리 사전에 훈련된 임베딩 벡터(pre-trained word embedding)들을 가져와 사용하는 방법이다. 우선 전자의 방법부터 알아보겟다. 임베딩 층의 입력으로 사용하기 위해서 입력 시퀀스의 각 단어들은 모두 정수 인코딩이 되어있어야 한다. 어떤 단어 -> 단어에 부여된 고유한 정수값 -> 임베딩 층 통과 -> 밀집 벡터 임베딩 층은 입력 정수에 대해 밀집 벡터로 매핑하고, 이 밀집 벡터는 인공 신경망의 학습 과정에서 가중치가 학습되는 것과 같은 방식으로 훈련된다. 훈련 과정에서 단어는 모델이 풀고자하는 작업에 맞는 값으로..