nlp

Data Science/ML&AI

[NLP] BERT란? - 자연어 처리 모델 알아보기

BERT(Bidirectional Encoder Representations from Transformers, BERT)는 2018년 구글이 개발한 자연어 처리 신경망 구조이며, 기존의 단방향 자연어 처리 모델들의 단점을 보완한 양방향 자연어 처리 모델이다. 트랜스포머를 이용하여 구현되었으며, 방대한 양의 텍스트 데이터로 사전 훈련된 언어모델이다. BERT의 기본 구조는 위와 같이 transformer의 encoder를 쌓아올린 구조이다. BERT는 이 구조를 기반으로 다음와 같은 Task를 학습시킨다. 다음 문장 예측 (Next Sentence Prediction, NSP) 문장에서 가려진 토큰 예측 (Maked Language Model, MLM) 위와 같은 학습을 거친 모델로 다른 자연어 처리 학습..

Data Science/ML&AI

[NLP] NLP 사전 훈련 변천사: 1. Word Embedding & ELMo

자연어처리는 (Natural Language Processing) 우리가 일상 생활에서 사용하는 언어의 의미를 분석하여 컴퓨터가 처리할 수 있도록 하는 일을 말한다. 음성인식, 내용요약, 번역, 사용자의 감성 분석, 텍스트 분류 작업, 챗봇 등 이미 우리 생활의 전반에 많이 사용되고 있는 기술이다. BERT (Bidirectional Encoder Representations from Transformers) 모델에 대해 자세히 알아보기에 앞서, 자연어 처리에 있어서의 사전훈련의 변천사에 대해 자세히 다뤄보겠다. 1. 사전 훈련된 워드 임베딩 Word2Vec, FastText, GloVe등 다양한 워드 임베딩 방법론들의 문제점은, 하나의 단어가 하나의 벡터값으로 맵핑되므로 문맥을 고려하지 못한다는 점이었..

so.py
'nlp' 태그의 글 목록 (2 Page)